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Abstract
To study the strong magneto-volume effects observed in CrTe and MnAs with
NiAs-type crystal structure, first-principle band calculations are carried out
by a self-consistent linear muffin-tin orbital method within the atomic sphere
approximation. The equilibrium volume of the unit cell is obtained as a
function of the magnetization M , which gives the volume magnetostriction.
The dependence on M of the bulk modulus is also estimated. The coefficients
a0 and b0 in the Landau expansion,�E(M) = a0 M2/2+b0 M4/4, are estimated
by the fixed-spin-moment method. The calculated results for CrTe and MnAs
are compared with those for bcc Fe. It is shown that the values of |a0|
and b0 for CrTe and MnAs are so small that the correction term from the
magneto-volume coupling constants becomes significant. This fact gives a
strong pressure dependence of the spontaneous magnetization. The pressure
dependence of the Curie temperature is also discussed by making use of the
magneto-volume coupling constants estimated in the present paper. The large
volume magnetostriction observed in CrTe and MnAs is explained by the present
calculations.

1. Introduction

Transition-metal monochalcogenides CrTe and MnAs with the NiAs-type crystal structure
have recently attracted much attention because their magnetic properties are very sensitive to
the atomic distance. These compounds are known to be metallic ferromagnets. The pressure
dependences of the saturation moment Ms and the Curie temperature TC are very strong.
For CrTe the ferromagnetic state was found to disappear at 3–3.5 GPa [1, 2]. Recently,
Ishizuka et al [3] found that the pressure-induced magnetic phase transition takes place
at about 7 GPa in Cr0.48Te0.52. On the other hand, MnAs shows a first-order transition
at TC, accompanied by a structural transformation from the NiAs-type to the MnP-type
structure [4]. Such a crystallographic transformation can be prevented when As atoms in MnAs
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are partially replaced with Sb atoms [5]. The observed values of ∂ ln Ms/∂ P and ∂ ln TC/∂ P
are −0.12 and −0.16 to −0.20 GPa−1 for Cr0.923Te [6] and −0.040 and −0.35 GPa−1 for
MnAs0.7Sb0.3 [7] respectively. These P dependences are very strong compared with the values
of ∂ ln Ms/∂ P = −0.0030 GPa−1 and ∂ ln TC/∂ P ∼ 0 observed for bcc Fe metal [8]. Recently,
Kanomata [9] observed the pressure dependence of Ms for Fe to be ∂ ln Ms/∂ P = −0.0036.
These strong P dependences for CrTe and MnAs have been considered to come from a strong
dependence of the exchange integral on the interatomic distances [10].

Many band calculations for CrTe and MnAs with the NiAs-type structure have already
been carried out [11, 12]. Takagaki et al [13] studied theoretically the pressure effect on the
electronic band structure of CrTe. They showed that the ferromagnetic state is stable at the
observed lattice constant, while the antiferromagnetic state is stabilized at smaller volumes.
Goto et al [7] showed by band calculations that the magnetic moment for MnAs is very sensitive
to the lattice parameters.

It is possible to estimate by band calculations the volume magnetostriction when the unit
cell volume with minimum energy is obtained as a function of the magnetic moment. It is
also possible to obtain the bulk modulus when the total energy is calculated as a function of
the unit cell volume. For such calculations, a fixed-spin-moment (FSM) method [14, 15] is
available for the band calculation, as the total energy is obtained as a function of the unit cell
volume and the magnetic moment without any adjustable parameters, as introduced by Lang
and Ehrenreich [16] for example. This theory is extended to the case at finite temperature by
taking into account the effect of spin fluctuations [17].

In this paper, the strong pressure dependences of the magnetization and the Curie
temperature for CrTe and MnAs are discussed by calculating the total energies as a function
of the unit cell volume and the magnetic moment in the FSM method. In section 2, a formal
theory for the magneto-volume effect is given. The FSM band calculations for CrTe and MnAs
are carried out in section 3. The pressure dependence of the Curie temperature is discussed
in section 4 by using the spin fluctuation theory. Our conclusion and discussion are given in
section 5.

2. Magneto-volume effect

The total energy for the system with magnetic moment M at volume V is written as

E(M, ω) = ω2/2κ0 + �E(M, ω), (1)

where the volume fraction ω = (V − V0)/V0, V0 is the equilibrium volume at M = 0 and κ0

the compressibility at M = 0. �E(M, ω) in equation (1) is expanded with respect to ω as

�E(M, ω) = �E0(M) + ω

(
∂�E(M, ω)

∂ω

)
0

+
1

2
ω2

(
∂2�E(M, ω)

∂ω2

)
0

. (2)

The coefficients in equation (2) are expanded with respect to M2 as

�E0(M) = 1
2 a0 M2 + 1

4 b0 M4,

(∂�E(M, ω)/∂ω)0 = −C1 M2 − C2 M4,

(∂2�E(M, ω)/∂ω2)0 = −G1 M2 − G2 M4.

(3)

The equations of state for the pressure P and magnetic field B are given by

P = −(∂ E(M, ω)/∂ω)M , (4)

B = (∂ E(M, ω)/∂M)ω. (5)
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From equation (4) one gets

ω = −κM{P − C1 M2 − C2 M4}, (6)

where

κ−1
M = κ−1

0 − G1 M2 − G2 M4. (7)

Equations (6) and (7) give the volume magnetostriction and the M dependence of the bulk
modulus. From equations (5) and (6), the magnetic equation of state is given by

B = a0(P)M + b0(P)M3, (8)

where

a0(P) = a0 + 2κ0C1 P, (9)

b0(P) = b0 − 2κ0C2
1 + 4κ0(C2 + κ0C1G1)P. (10)

Similar discussions were also given by Belov [18], Wohlfarth [8] and Shimizu [19].
When a0(P) < 0 and b0(P) > 0, the spontaneous magnetic moment Ms is given by

Ms(P)2 = |a0(P)|/b0(P). (11)

Then the pressure dependence of Ms is written as

∂ ln Ms

∂ P
= −κ0{C1/|a0| + 2(C2 + κ0C1G1)/(b0 − 2κ0C2

1 )}, (12)

at P = 0.

3. FSM calculations

The electronic structures of CrTe and MnAs are calculated by the self-consistent linear muffin-
tin orbital (LMTO) method within the atomic sphere approximation (ASA) with the exchange-
correlation potential by von Barth and Hedin [20]. A hexagonal unit cell of the NiAs-type
structure contains two transition-metal atoms (Cr or Mn) and two anions (Te or As). The
observed ratios c/a of the lattice parameters are used in the present calculations. In order to
get a larger packing fraction of atoms we introduce two empty atoms with Z = 0 in the unit
cell, where Z is the atomic number. The positions of each atom in the unit cell are given in [7].
Self-consistent calculations are carried out at 216 k points in the irreducible 1/24 Brillouin
zone. The basis set with angular momenta up to l = 2 is adapted for all atoms including empty
atoms.

The FSM calculations are carried out for CrTe and MnAs. Figures 1 and 2 show the
calculated results of the total energy for CrTe and MnAs as a function of the unit cell volume
V , for various values of M . The minimum energies at M = 0 are obtained at V0 = 35.5 and
26.7 Å3 for CrTe and MnAs respectively. These values for the theoretical unit cell volume at
M = 0 are a little smaller than the observed ones above TC. The theoretical unit cell volume is
estimated as a function of M . The relative volume changes ω are shown in figure 3. In order to
compare these results for CrTe and MnAs with the results for bcc Fe, we have carried out the
same numerical calculations for Fe. The equilibrium unit cell volume at M = 0 is obtained
as V0 = 9.95 Å3, which is also a little smaller than the observed value above TC. The result
obtained for ω in Fe is shown in figure 3.

The bulk modulus κ−1
M is obtained by the curvature of the total energy at the minimum.

In figure 4 the estimated bulk moduli for CrTe, MnAs and bcc Fe are shown as a function of
M2. When the calculated κ−1

M is fitted in the form of equation (7), the values of κ0, G1 and
G2 are estimated. Using κM thus estimated we can also evaluate the values of C1 and C2 from
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Figure 1. Calculated total energies for CrTe as a function of the unit cell volume V . Curves (1)–(7)
are for M = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 µB/fu respectively.
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Figure 2. Calculated total energies for MnAs as a function of the unit cell volume V . Curves
(1)–(7) are for M = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 µB/fu respectively.
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Figure 3. Calculated results of ω. Closed and open circles and closed squares are for CrTe, MnAs
and bcc Fe respectively. The broken curves are those fitted to the form of equation (6) in the text.
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Figure 4. Calculated results of κ−1
M . Closed and open circles and closed squares are for CrTe,

MnAs and bcc Fe respectively. The broken curves are fitted to the form of equation (7) in the text.

Table 1. Calculated values of V0, κ0, κ0C1, κ0C2, G1, G2, a0, b0, 2κ0C2
1 , MV and Ms(0),

∂ ln Ms/∂ P and ∂ ln TC/∂ P for CrTe, MnAs and bcc Fe, together with the observed values for Ms ,
∂ ln Ms/∂ P and ∂ ln TC/∂ P .

CrTe MnAs Fe

V0 (Å3/fu) 35.5 26.7 9.95
κ0 (GPa−1) 0.706 × 10−2 0.434 × 10−2 0.298 × 10−2

κ0C1 ((µB/fu)−2) 0.874 × 10−2 0.788 × 10−2 1.02 × 10−2

κ0C2 ((µB/fu)−4) 0.170 × 10−3 0.477 × 10−3 0.798 × 10−3

G1 (GPa/(µB/fu)2) 1.41 3.78 3.73
G2 (GPa/(µB/fu)4) 0.168 0.568 1.57
a0 (T/(µB/fu)) −7.20 × 102 −3.85 × 102 −5.23 × 103

b0 (T/(µB/fu)3) 1.27 × 102 1.58 × 102 1.33 × 103

2κ0C2
1 (T/(µB/fu)3) 0.83 × 102 0.82 × 102 0.75 × 102

MV (µB/fu) (Cal.) 2.38 1.56 1.98
Ms(0) (µB/fu) (Cal.) 4.04 2.25 2.04
Ms (µB/fu) (Obs.) 2.5 [6] 3.2 [7] 2.2 [8]
∂ ln Ms/∂ P (GPa−1) (Cal.) −0.091 −0.105 −0.37 × 10−2

∂ ln Ms/∂ P (GPa−1) (Obs.) −0.12 [6] −0.04 [7] −0.30 × 10−2 [8]
−0.36 × 10−2 [9]

∂ ln TC/∂ P (GPa−1) (Cal.) −0.103 −0.132 −0.5 × 10−2

∂ ln TC/∂ P (GPa−1) (Obs.) −0.26 [6] −0.35 [7] ∼0 [8]

the calculated results of ω fitted in the form of equation (6) at P = 0. The estimated values
of these coefficients are listed in table 1. It was found that the values of the magneto-volume
coupling constants C1 and C2 for CrTe and MnAs are smaller than those for Fe.

Now we are going to estimate the Landau coefficients a0 and b0 in equation (3) at the
equilibrium unit cell volume V0. The number of electrons with majority and minority spins,
N+ and N−, are given by (N + M)/2 and (N − M)/2, where N and M are the total number
of electrons and the spin moment divided by µB. Under the constraint of fixed values of N+

and N−, the electron density n+(r), n−(r) and the potentials for electrons can be calculated
by using the usual Kohn–Sham self-consistent equations, which give two Fermi levels µ+ and
µ− in the majority and minority spin bands respectively [14, 15]. For an arbitrary M , the
system is not in the equilibrium state, so µ+ �= µ−. However, the constrained state becomes
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Figure 5. Calculated result of �µ/2M for CrTe at V0. The straight line is fitted by �µ/2M =
a0 + b0 M2.
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Figure 6. Calculated result of �µ/2M for MnAs at V0. The straight line is fitted by �µ/2M =
a0 + b0 M2.

an equilibrium state at the magnetic field B = (µ+ − µ−)/2µB, as ∂�E(M)/∂M = B and
∂�E(M)/∂ N± = µ±. This means that the state with the given M is stabilized at this B .

By making use of equation (8) at P = 0, one gets

�µ/2µB = a0 M + b0 M3, (13)

where �µ = µ+ − µ−. We can fit the calculated results for �µ in the form of equation (13),
as shown in figures 5–7 for CrTe, MnAs and Fe respectively. The estimated values of a0 and
b0 are shown in table 1. The moments MV and Ms(0) at a constant V (=V0) and at a constant
P (=0) are given by

MV = √|a0|/b0, Ms(0) =
√

|a0|/{b0 − 2κ0C2
1 } (14)

respectively. The calculated results for MV and Ms(0) are shown in table 1, together with the
observed values. The agreement between the calculated and observed values of Ms(0) for CrTe
and MnAs is not so good, but our calculated values are rather close to the results obtained using
spin polarized band calculations [11, 13]. It is pointed out here that the difference between
MV and Ms(0) is rather large for CrTe and MnAs, compared with that for Fe. This is because
the values of |a0| and b0 for CrTe and MnAs are one order of magnitude smaller than those for
Fe, while the values for 2κ0C2

1 are almost the same as each other.
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Figure 7. Calculated result for �µ/2M of bcc Fe at V0. The straight line is fitted by
�µ/2M = a0 + b0 M2.

From equation (12), together with the coefficients listed in table 1, we can estimate the
pressure dependence of Ms. The estimated values of ∂ ln Ms/∂ P together with the observed
ones are shown in table 1. The value of the second term in the curly bracket in equation (12) is
almost the same as that of the first term. This means that the higher-order coupling constants
C2 and G1 of the magneto-elastic energy play an important role. The agreement between the
calculated and observed values is satisfactory. It was shown that the values of ∂ ln Ms/∂ P for
CrTe and MnAs are very large compared with the value for Fe. This is because the pressure
dependence of b0 is rather strong for CrTe and MnAs. The coefficients of P in a0(P) and
b0(P) given by equations (9) and (10) for CrTe and MnAs are not so different from those for
Fe. However, the values of |a0| and b0 −2κ0C2

1 for CrTe and MnAs are one order of magnitude
smaller than those for Fe, as shown above. Therefore, the pressure dependence of Ms for CrTe
and MnAs becomes much stronger than that for Fe.

4. Pressure dependence of TC

In order to discuss the pressure dependence of TC, the model developed in section 2 is extended
to the case at finite temperature, by taking into account the effect of spin fluctuations on the
Landau–Ginzburg model. The magnetic free energy density is given by

� fm(r) = 1
2 a0|m(r)|2 + 1

4 b0|m(r)|4 + 1
2 D|∇ · m(r)|2, (15)

where m(r) is the magnetization density. The magneto-elastic energy is introduced by

� fmv(r) = −ω{C1|m(r)|2 + C2|m(r)|4} − 1
2ω2{G1|m(r)|2 + G2|m(r)|4}. (16)

The free energy F(M, ω) is given by a sum of the elastic energy ω2/2κ0, magnetic and
magneto-elastic terms as

F(M, ω) = ω2

2κ0
+

1

V

∫
d3r {� fm(r) + � fmv(r)}. (17)

The equations of state for the pressure P and magnetic field B are given by

P = −〈(∂ F(M, ω)/∂ω)M 〉, (18)

B = 〈(∂ F(M, ω)/∂M)ω〉, (19)
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where 〈· · ·〉 denotes a thermal average. One gets from equation (18)

ω = −κM P + κMC1{M2 + ξ(T )2}, (20)

where

κ−1
M = κ−1

0 − G1{M2 + ξ(T )2}, (21)

Here, ξ(T )2 is a mean square amplitude of spin fluctuations [21] given by

ξ(T )2 = 1

V

∑
q

〈|m(q)|2〉, (22)

and m(q) is the Fourier component of |m(r)|. In equation (20) we neglect the higher-order
terms with respect to M2 and ξ(T )2. Similar discussions have also been given by Entel and
Schröter [17].

Equation (19) is rewritten with the use of equation (20) as

B = a(T, P)M + b(T, P)M3, (23)

where

a(T, P) = a0 + 2κ0C1 P + { 5
3 b0 − 2κ0C2

1 + 4κ0C1G1 P + 20
3 κ0C2 P}ξ(T )2, (24)

b(T, P) = b0 − 2κ0C2
1 + 4κ0{C2 + κ0C1G1}P. (25)

The Curie temperature TC at P = 0 is given by a(TC, 0) = 0 and one gets

ξ(TC)2 = 3
5 |a0|/{b0 − 6

5κ0C2
1 }. (26)

Moriya and Usami [22] discussed the magneto-volume effect in a weak ferromagnet. They
have obtained

ξ(TC)2 = 3
5 |a0|/b0, (27)

which is a little different from our equation (26). The value of |a0|/b0 in equation (27) is M2
V

at a constant volume as given by equation (14).
The temperature dependence of the volume magnetostriction is determined by the ratio

η(T ) of the magnitude of the mean square of the local moment at T to its value at T = 0 as

ω = κ0C1 Ms(0)2η(T ), (28)

where Ms(0) is given in equation (14). In our theory, η(TC) is written with the use of
equations (14) and (26) by

η(TC) = 3
5 {b0 − 2κ0C2

1}/{b0 − 6
5κ0C2

1 }, (29)

while η(TC) = 3/5 in Moriya and Usami’s theory [22]. The estimated values of η(TC) are
shown in table 1. The values of η(TC) for CrTe and MnAs are rather smaller than 0.6 in Moriya
and Usami’s theory. This means that the magneto-volume effect in these compounds is very
strong, as observed in [6, 7].

Moriya [23] and Lonzarich and Taillefer [24] have discussed spin fluctuations in a weak
ferromagnet. By making use of the fact that ξ(TC)2 is proportional to T 4/3

C [23], we get, with
the use of equations (24) and (25),

∂ ln TC

∂ P
= −3

2
κ0{C1/|a0| + (10C2 + 6κ0C1G1)/(5b0 − 6κ0C2

1 )}, (30)

where we neglect the pressure dependence of the coefficient of T 4/3
C in ξ(TC)2. The calculated

values are given in table 1, together with the observed ones. The value of the second term
in the curly bracket in equation (30) is almost the same as that of the first term. This means
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that the higher-order coupling constants play an important role. The difference between the
calculated and observed results is attributed to the pressure dependence of the coefficient of
T 4/3

C in ξ(TC)2, that is, to the pressure dependence of the characteristic temperature T0 of spin
fluctuations. Takahashi [25] obtained the pressure dependence of TC, by assuming that the
local spin fluctuation amplitude is almost constant, as

∂ ln TC

∂ P
= 3

2

∂ ln Ms

∂ P
. (31)

When the higher-order terms in the magneto-elastic energy, C2 and G1, are neglected, our
result for equation (30) coincides with equation (31), as ∂ ln Ms/∂ P = −κ0C1/|a0|. However,
it should be noted that equation (31) is derived from the zero-point spin fluctuations, while
equation (30) is derived from the thermal ones.

5. Conclusion and discussion

In this paper, the magneto-volume effects for CrTe and MnAs with a hexagonal NiAs structure
have been discussed using the first-principles calculation of the FSM method based on the
LMTO method within the ASA. The strong pressure dependences of the magnetization and
the Curie temperature observed for CrTe and MnAs were considered to come from a strong
dependence of the exchange integral on the interatomic distances [10]. However, it has been
shown by band calculation that these strong P dependences come from the fact that the values
of the Landau coefficients |a0| and b0 for these compounds are one order of magnitude smaller
than those for bcc Fe, while the magneto-volume coupling constant is almost the same. This
fact means that the relative value b0(P)/b0(0) depends strongly on P as does a0(P)/a0(0).
Figure 8 denotes the P dependences of a0(P)/a0(0) and b0(P)/b0(0) for CrTe, MnAs and Fe,
calculated by equations (9) and (10). As seen in figure 8, the pressure dependences of a(P)

and b(P) for CrTe and MnAs are much stronger than those for Fe.
The strong temperature dependence of the volume magnetostrictions observed for CrTe

and MnAs is due to the fact that η(TC) in equation (29) is small. This is because the value of b0

itself is small and its correction terms from the magneto-volume coupling κ0C1 are relatively
large. The large difference between the magnetizations MV and Ms(0) at constant volume
and constant pressure is also due to this fact. It is concluded that CrTe and MnAs are weak
ferromagnets with small values of |a0| and b0, although the magneto-volume couplings are
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almost the same as those for bcc Fe. The Stoner factor S = 1 − I D0 can be estimated from
the calculated value of a0, where I and D0 are the exchange integral and density-of-states
at the Fermi level. The values of S for CrTe and MnAs calculated at the theoretical lattice
constants are −0.124 and −0.066 respectively, while the value of S for bcc Fe is −0.493. As
the absolute values of S for CrTe and MnAs are very small compared with that for Fe, it can
be concluded that these compounds are very weak ferromagnets. The calculations for other
weak ferromagnets, e.g. Ni3Al and ZrZn2, will be carried out in the near future.
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